Online Learning of Deep Hybrid Architectures for Semi-supervised Categorization
نویسندگان
چکیده
A hybrid architecture is presented capable of online learning from both labeled and unlabeled samples. It combines both generative and discriminative objectives to derive a new variant of the Deep Belief Network, i.e., the Stacked Boltzmann Experts Network model. The model’s training algorithm is built on principles developed from hybrid discriminative Boltzmann machines and composes deep architectures in a greedy fashion. It makes use of its inherent “layer-wise ensemble” nature to perform useful classification work. We (1) compare this architecture against a hybrid denoising autoencoder version of itself as well as several other models and (2) investigate training in the context of an incremental learning procedure. The best-performing hybrid model, the Stacked Boltzmann Experts Network, consistently outperforms all others.
منابع مشابه
Online Semi-Supervised Learning with Deep Hybrid Boltzmann Machines and Denoising Autoencoders
Two novel deep hybrid architectures, the Deep Hybrid Boltzmann Machine and the Deep Hybrid Denoising Auto-encoder, are proposed for handling semisupervised learning problems. The models combine experts that model relevant distributions at different levels of abstraction to improve overall predictive performance on discriminative tasks. Theoretical motivations and algorithms for joint learning f...
متن کاملHybrid Deep Discriminative/Generative Models for Semi-Supervised Learning
Most methods in machine learning are described as either discriminative or generative. The former often attain higher predictive accuracy, while the latter are more strongly regularized and can deal with missing data. Here, we propose a new framework to combine a broad class of discriminative and generative models, interpolating between the two extremes with a multiconditional likelihood object...
متن کاملLearning a Deep Hybrid Model for Semi-Supervised Text Classification
We present a novel fine-tuning algorithm in a deep hybrid architecture for semisupervised text classification. During each increment of the online learning process, the fine-tuning algorithm serves as a top-down mechanism for pseudo-jointly modifying model parameters following a bottom-up generative learning pass. The resulting model, trained under what we call the Bottom-Up-Top-Down learning a...
متن کاملSSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval
The hashing methods have been widely used for efficient similarity retrieval on large scale image datasets. The traditional hashing methods learn hash functions to generate binary codes from hand-crafted features, which achieve limited accuracy since the hand-crafted features cannot optimally represent the image content and preserve the semantic similarity. Recently, several deep hashing method...
متن کاملHybrid Deep Belief Networks for Semi-supervised Sentiment Classification
In this paper, we develop a novel semi-supervised learning algorithm called hybrid deep belief networks (HDBN), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015